A-level Mathematics

MFP4 Further Pure 4
Mark scheme

[^0]Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations	
M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
	$\begin{aligned} & \operatorname{det} \mathbf{M}=-51 \\ & \operatorname{det} \mathbf{N}=\frac{1}{17} \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \end{gathered}$		Correct determinant of \mathbf{M} seen or used Correct determinant of \mathbf{N}
	Hence $\operatorname{det} \mathbf{M N}^{2}=\operatorname{det} \mathbf{M} x \operatorname{det} \mathbf{N} x \operatorname{det} \mathbf{N}$ $= \pm 51 \times \frac{1}{17} \times \frac{1}{17}= \pm 51 \times \frac{1}{289}=\frac{ \pm 3}{17}$	dM1		Finds the scale factor of the enlargement - using determinant rules - follow through their $\|\mathbf{M}\|$.
	Volume of $S^{\prime}==1.5\left(\mathrm{~cm}^{3}\right)$	A1	4	CSO - must be positive $(-1.5=1.5 \text { is } \mathrm{A} 0)$
	Total		4	

Note:

$\mathbf{C B}=\left(\begin{array}{ccc}0.28 & -0.96 & 0 \\ -0.96 & -0.28 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}-0.96 & 0.28 & 0 \\ -0.28 & -0.96 & 0 \\ 0 & 0 & 1\end{array}\right)=$ M0A0dM0A0
$\binom{$ Gives }{$\theta=196.26}$

Q3	Solution	Mark	Total	Comment
(a)	determinant of $\mathbf{P}=7 k+14$	B1	1	Correct expression obtained
(b)	$\left[\begin{array}{ccc}-k-2 & -6 & -k+4 \\ -k-2 & 1 & -k-3 \\ 0 & -14 & -7 k\end{array}\right]$	$\underset{\mathbf{A}(\mathbf{2}, \mathbf{1 , 0})}{\mathbf{M 1}}$		M1 one full row or column correct. A1 at least 6 entries correct. A2 all entries correct.
	$\mathbf{P}^{-1}=\frac{1}{7 k+14}\left[\begin{array}{ccc}-k-2 & -k-2 & 0 \\ -6 & 1 & -14 \\ -k+4 & -k-3 & -7 k\end{array}\right]$	dM1		Transposition of their cofactors (with one further error at most) and dividing by their determinant
		A1	5	Fully correct - CAO
	Total		6	

(a)	Alternative $\begin{aligned} & \mathbf{M}^{-1}=\frac{1}{2 k^{2}-3 k-27}\left(\begin{array}{ccc} k^{2}+k-6 & -3 k-9 & 3+k \\ 1-3 k & 2 k+6 & -5 \\ 18-4 k & 0 & 2 k-9 \end{array}\right) \\ & \mathbf{M}^{-1}\left(\begin{array}{c} 8 \\ -6 \\ -4 k+4 \end{array}\right) \\ & =\frac{1}{2 k^{2}-3 k-27}\left(\begin{array}{c} 8 k^{2}+8 k-48+18 k+54-4 k^{2}-8 k+12 \\ 8-24 k-12 k-36+20 k-20 \\ 144-32 k-8 k^{2}+44 k-36 \end{array}\right) \\ & =\frac{1}{2 k^{2}-3 k-27}\left(\begin{array}{c} 4 k^{2}+18 k+18 \\ -16 k-48 \\ -8 k^{2}+12 k+108 \end{array}\right) \\ & \left\{\begin{array}{c} 1 \\ \left\{\begin{array}{c} 2(2 k+3)(k+3) \\ -16(k+3) \\ -4(2 k-9)(k+3) \end{array}\right) \end{array}\right\} \end{aligned}$	(M1) (dM1) (A1) (A1) (A1)	(5)	One row correct with attempt at $\frac{1}{\operatorname{det}}$ Two rows correct (unsimplified) with attempt at $\frac{1}{\operatorname{det}}$ A1 for each correct row including correct $\frac{1}{\operatorname{det}}$

(b)	Sets their determinant $=0$ $\left(0=2 k^{2}-3 k-27\right)$ $k=-3$ or $k=4.5$	A1,A1	MUST be three term quadratic	
	A1 for each correct value			
Alternative Considers when denominators in expressions above are zero. $k=-3$ or $k=4.5$	(M1)	(A1,A1)	(3)	

(c)	When $k=4.5$, matrix becomes $\left[\begin{array}{cccc} 2 & 3 & -1 & 8 \\ 0 & 0 & 2.5 & -18 \\ 0 & 0 & 7.5 & -30 \end{array}\right] \mathrm{OE}$ (Inconsistent,) therefore no solutions. Three planes form a (triangular) prism. When $k=-3$, matrix becomes $\left\lvert\, \begin{array}{lll} 2 x & +3 y & -z \\ 3 x & -3 y & +z \\ 3 & =-6 \\ 4 x & +6 y & -2 z \end{array}=16\right.$ (Consistent,) therefore infinite number of solutions. Two planes are identical and intersect the third plane (in a line). (Accept sheaf)	M1 A1 B1 B1	4	$\begin{array}{cccc} 2 x & +3 y & -z & =8 \\ 3 x & +\frac{9}{2} y & +z & =-6 \\ 4 x & +6 y & +\frac{11}{2} z & =-14 \end{array}$ k must be correct, with correct working. If "Three planes form a (triangular) prism." With no working MOAO With correct working With correct working MUST say two planes are the same NOT simply "sheaf" or "line"
	Total		12	

Q6	Solution	Mark	Total	Comment
(a)	$\mathbf{a} \times \mathbf{c} \mathbf{d}=$			Correctly evaluates an appropriate
	$\left\|\begin{array}{lll}2 & 2 & 1\end{array}\right\|$			triple scalar product (eg $\overrightarrow{A B}, \overrightarrow{A C} \& \overrightarrow{A D})$
	-1 304			Or
	$\left\|\begin{array}{lll}6 & 4 & -3\end{array}\right\|$			uses correct vector product result in scalar product
	$\left.\begin{array}{l} 2(-9-16)-2(3-24)+(-4-18) \\ \text { or } \\ 2(-9-16)+(-6-4)+6(8-3) \end{array}\right\} \mathrm{OE}$	M1		$\left(\begin{array}{c}1 \\ 4 \\ -3\end{array}\right)\left(\begin{array}{c}-22 \\ 4 \\ 8\end{array}\right)$ or $\left(\begin{array}{c}2 \\ -1 \\ 6\end{array}\right)\left(\begin{array}{c}-25 \\ 10 \\ 5\end{array}\right)$ or $\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\left(\begin{array}{c}-21 \\ 12 \\ 9\end{array}\right)$
	$=-30$			
	Volume = 30 (cubic units)	A1	2	States correct positive volume. (Condone - $30=30$)
(b)(i)	\mathbf{v} or $\mathbf{w}=\overrightarrow{C B}=\left(\begin{array}{c}2 \\ -1 \\ 6\end{array}\right)$ or $\overrightarrow{C D}=\left(\begin{array}{c}-1 \\ 1 \\ -7\end{array}\right)=\overrightarrow{B E}$			Any correct direction vector
	or $\overrightarrow{C E}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ or $\overrightarrow{D B}=\left(\begin{array}{c}3 \\ -2 \\ 13\end{array}\right)$	B1		Second correct direction vector
	$\mathbf{u}=\left(\begin{array}{c}4 \\ 2 \\ 10\end{array}\right)$ or $\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$ or $\left(\begin{array}{c}1 \\ 4 \\ -3\end{array}\right)$ or $\left(\begin{array}{l}3 \\ 3 \\ 3\end{array}\right)$			
	Hence $\mathbf{r}=\left(\begin{array}{c}4 \\ 2 \\ 10\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 1 \\ -7\end{array}\right)+\mu\left(\begin{array}{c}2 \\ -1 \\ 6\end{array}\right)$	B1	3	OE - Fully correct - there are many possible combinations

(b)	For a singular matrix det $=0$ $-3(2+3+z)(2-3)(2+6)=0$ Pl by $z+5=0$ Hence $z=-5$	M1 A1	2	Attempt to substitute in given values for $x(=2)$ and $y(=3)$ and set their determinant equal to zero. Be generous. Correct value obtained - MUST have scored 6 marks in part (a) CSO
	Total		8	
(b)	Alternative $\left\lvert\, \begin{array}{r} \left\|\begin{array}{ccc} 2 & 9 & 3+z \\ 3 & 4 & 2+z \\ 5 & 18 & z \end{array}\right\| \\ 0=2(4 z-36-18 z)-3(9 z-54-18 z) \\ +5(18+9 z-12-4 z) \end{array}\right.$ Hence $z=-5$	(M1) (A1)	(2)	Independent of (a) OE CSO - doesn't need 6 marks in (a)

Q8	Solution	Mark	Total	Comment
(a)	Value $=1$	B1	1	CAO
(b)(i)	$\begin{aligned} & -2 a+3=-5 \\ & -2 b+c=4 \end{aligned}$	M1		Forms two correct equations
	$a c-3 b=1$			
		B1		Finds correct value of a
	$\begin{aligned} & a=4 \\ & b=-3 \end{aligned}$	A1		Finds correct value of b
	b $=-3$ $c=-2$	A1		Finds correct value of c
(b)(ii)	$\left[\begin{array}{l} x^{\prime} \\ y^{\prime} \end{array}\right]=\left[\begin{array}{cc} 4 & 3 \\ -3 & -2 \end{array}\right]\left[\begin{array}{l} x \\ m x+2 \end{array}\right]=\left[\begin{array}{l} 4 x+3 m x+6 \\ -3 x-2 m x-4 \end{array}\right]$		4	
				Obtains expressions for their x ' and y^{\prime} in x only
				$x^{\prime}=4 x+3 m x+3 k$
	$\left.\begin{array}{l} x^{\prime}=" 4 " x+3 m x+6 \\ y^{\prime}="-3 " x+"-2 " m x+"-4 " \end{array}\right\}$	B1F		$y^{\prime}=-3 x-2 m x-2 k$
	Invariant implies $y^{\prime}=m x^{\prime}+2$			Invariant implies $y^{\prime}=m x^{\prime}+k$
	Therefore			or
	$-3 x-2 y=m(4 x+3 y)+2$			$-3 x-2 m x-2 k=m(4 x+3 m x+3 k)+k$
	$\begin{aligned} & \text { or } \\ & -3 x-2 m x-4=m(4 x+3 m x+6)+2 \end{aligned}$	M1		Applies invariant line condition ($k \neq 0$)
	$3(m+1)^{2} x+6(m+1)=0$			$3(m+1)^{2} x+3 k(m+1)=0$
	Therefore $m=-1$ so $y=-x+2$ is the required line	A1	3	Obtains the correct equation for the invariant line through the point $(0,2)$
	Total		8	

Q9	Solution	Mark	Total	Comment
(a)	$\left\lvert\, \begin{array}{ll} \left\|\begin{array}{cc} -p-\lambda & q-p \\ p+q & p-\lambda \end{array}\right\|=0 \\ (-p-\lambda)(p-\lambda)-(p+q)(q-p)=0 \\ -p^{2}+\lambda^{2}+p^{2}-q^{2}=0 \\ (\lambda-q)(\lambda+q)=0 \end{array}\right.$	M1		Forms characteristic equation by expanding determinant. $\mathrm{PI}=0$ A1 each eigenvalue
	$\left[\begin{array}{cc} -p & q-p \\ p+q & p \end{array}\right]\left[\begin{array}{c} q-p \\ p+q \end{array}\right]=\left[\begin{array}{l} q^{2}-p q \\ q^{2}+p q \end{array}\right]=q\left[\begin{array}{l} q-p \\ p+q \end{array}\right]$	M1		Must have correct intermediate step from LHS to RHS
(ii)	$\lambda=q$	A1	2	
	$\left[\begin{array}{cc} -p+q & q-p \\ p+q & p+q \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \end{array}\right]$			
	Top row gives $(-p+q) x+(q-p) y=0$ or Bottom row gives $(p+q) x+(p+q) y=0$	M1		Minimal acceptable: $-p x+q x+q y-p y=0$ or $p x+q x+p y+q y=0$
	Hence an eigenvector is $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ which contains no p or q terms	A1	2	Obtains correct eigenvector and comments on there being no p, q terms
	ALTERNATIVE for (b)(i) $\lambda=q$ $\left[\begin{array}{cc} -p-q & q-p \\ p+q & p-q \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \end{array}\right]$ Using top row $(-p-q) x+(q-p) y=0$ or using second row $(p+q) x+(p-q) y=0$	(M1)		
	$\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} q-p \\ p+q \end{array}\right]$	(A1)	(2)	Clear working to show/verify eigenvector. Must state $\lambda=q$ somewhere. AG - CSO - Fully explained

[^0]: Version/Stage: 1.0 Final

