

A-level Mathematics

MFP4 Further Pure 4 Mark scheme

6360

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

M m or dM	mark is for method mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

	• • •			
Q1	Solution	Mark	Total	Comment
	$\det \mathbf{M} = -51$	B 1		Correct determinant of M seen or used
	det $\mathbf{N} = \frac{1}{17}$	M1		Correct determinant of N
	Hence det \mathbf{MN}^2 = det \mathbf{M} x det \mathbf{N} x det \mathbf{N}			Finds the scale factor of the
	$=\pm 51 \times \frac{1}{17} \times \frac{1}{17} = \pm 51 \times \frac{1}{289} = \frac{15}{17}$	dM1		enlargement – using determinant rules – follow through their $ \mathbf{M} $.
	Volume of $S' = = 1.5(cm^3)$	A1	4	CSO – must be positive $(-1.5 = 1.5 \text{ is A0})$
	Total		4	

Q2	Solution	Mark	Total	Comment
	$\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1		States the correct matrix for ${f B}$
	Since B represents a reflection then $\mathbf{B} = \mathbf{B}^{-1}$			
	$\mathbf{A} = \mathbf{B}^{-1}\mathbf{C} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.28 & -0.96 & 0 \\ -0.96 & -0.28 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -0.96 & -0.28 & 0 \\ 0.28 & -0.96 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	M1		Pre-multiplies C by their B^{-1} or B in correct order. Can be $A = B^{-1}C$
				Correct matrix for A obtained
	Transformation is a rotation about the z axis where $\cos \theta = -0.96$ or $\sin \theta = 0.28$	dM1		Identifies A as a being a rotation about the <i>z</i> axis and attempts to find angle by matching $\cos \theta$ or $\sin \theta$ PI -163.7° or AWRT 164°
	${f A}$ represents a rotation of 164 ⁰ about the z axis	A1	5	Fully correct geometrical description stated – CSO
	Alternative			
	If $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ Correct Answer = (B1)+M1A1dM1A1			
	Wrong Answer – but "rotation z axis" with either $\cos \theta = -0.96$ or $\sin \theta = 0.28$ = (B1)+SCB2			
	Wrong Answer – less than above = (B1)+M0A0dM0A0			
	Total		5	
Note CB	$= \begin{pmatrix} 0.28 & -0.96 & 0 \\ -0.96 & -0.28 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -0.96 & 0.28 \\ -0.28 & -0.96 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \mathbf{N}$	/IOA0dM	i0A0
Gi	ves = 196.26			

Q3	Solution	Mark	Total	Comment
(a)	determinant of $\mathbf{P} = 7k + 14$	B1	1	Correct expression obtained
(b)	$\begin{bmatrix} -k-2 & -6 & -k+4 \\ -k-2 & 1 & -k-3 \\ 0 & -14 & -7k \end{bmatrix}$	M1 A(2,1,0)		M1 one full row or column correct. A1 at least 6 entries correct. A2 all entries correct.
	$\mathbf{P}^{-1} = \frac{1}{7k + 14} \begin{bmatrix} -6 & 1 & -14 \\ -k + 4 & -k - 3 & -7k \end{bmatrix}$	A1	5	Transposition of their cofactors (with one further error at most) and dividing by their determinant Fully correct - CAO
	Total		6	

Q4	Solution	Mark	Total	Comment
	$\mathbf{n} = \begin{pmatrix} 2 \\ p \\ 1 \end{pmatrix} \text{ and } \mathbf{d} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$	B1		n, d correctly identified or used
	$\mathbf{n.d} = 4 - p$ $ \mathbf{n} = \sqrt{p^2 + 5}$ $ \mathbf{d} = \sqrt{6}$ angle between n and d is 60°	M1		Calculates $\mathbf{n}.\mathbf{d}$ correctly – follow through only one error in \mathbf{d} only – \mathbf{n} must be correct
	Hence $\frac{4-p}{\sqrt{6}\sqrt{p^2+5}} = k$ OE	dM1		Forms correct scalar product equation – follow through only one error in d
	$k = \frac{1}{2}$	B1		$\frac{1}{2}$ coming from use of $\cos(60)$ or $\sin(30)$
	Squaring and rearranging gives $p^2 + 16p - 17 = 0$	dM1		Obtains a three term quadratic equation
	Hence $p=1$ or $p=-17$	A1	6	Both values correct
	Total		6	
	Alternative $\mathbf{n} = \begin{pmatrix} 2 \\ p \\ 1 \end{pmatrix}$ and $\mathbf{d} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$	(B1)		n, d correctly identified or used
	$\mathbf{n} \times \mathbf{p} = \begin{pmatrix} 2p+1 \\ -3 \\ -2-p \end{pmatrix}$	(M1)		Calculates $\mathbf{n} \times \mathbf{p}$ correctly – follow through only one error in \mathbf{d} only – \mathbf{n} must be correct
	$\sqrt{5p^2 + 8p + 14} = \sqrt{6}\sqrt{5 + p^2} \times k$	(dM1)		Forms correct vector product equation – follow through only \mathbf{one} error in \mathbf{d}
	$k = \frac{\sqrt{3}}{2}$	(B1)		$\frac{\sqrt{3}}{2}$ coming from use of $\sin(60)$
	Squaring and rearranging gives $p^2 + 16p - 17 = 0$	(dM1)		Obtains a three term quadratic equation
	Hence $p=1$ or $p=-17$	(A1)	(6)	Both values correct

Q5	Solution	Mark	Total	Comment
(a)				Alt 1 $r_{\rm c}$ replaced by $2r_{\rm c} = r_{\rm c}$
	$3 \ k \ 1 \ -6$			r_2 replaced by $4r_2 - 3r_3$
	$\begin{bmatrix} 4 & 6 & k+1 & -4k+4 \end{bmatrix}$			$\begin{bmatrix} 0 & 0 & -k-3 & 4k+12 \end{bmatrix}$
	r_3 replaced by $r_3 - 2r_1$			$\begin{bmatrix} 0 & 0 & k & 3 & 4k + 12 \\ 0 & 4k - 18 & 1 - 3k & 12k - 36 \end{bmatrix}$
	r_2 replaced by $r_2 - 1.5r_1$			$\begin{vmatrix} 4 & 6 & k+1 & -4k+4 \end{vmatrix}$
				Alt 2
	0 k - 4.5 2.5 - 18			$r_2 + r_1$
	$\begin{bmatrix} 0 & 0 & k+3 & -4k-12 \end{bmatrix}$			$r_3 + (k+1)r_1$
				$\begin{bmatrix} 5 & 3+k & 0 & 2 \\ 6+2k & 0+2k & 0 & 4k+12 \end{bmatrix}$
				$\begin{bmatrix} 0+2k & 9+3k & 0 & 4k+12 \end{bmatrix}$
				$\begin{bmatrix} r_3 - 5r_2 \\ 0 \end{bmatrix}$
				$\begin{bmatrix} 2 & 3 & -1 & 6 \\ 5 & 3+k & 0 & 2 \end{bmatrix}$
				-9+2k 0 0 $4k+6$
		M1		Attempts to eliminate variables to obtain an expression for one variable.
	Hence			
	$z = -4$ or $\frac{-4k - 12}{4k - 12}$ or $\frac{-4(k + 3)}{4k - 12}$. 1		Correct answer (terms collected) for
	k+3 $k+3$ $k+3$	AI		first variable
	Substituting $y(k-4.5)-10=-18$	M1		Attempts to substitute and rearranges
	-16 -8			
	$y = \frac{10}{2k-9}$ or $\frac{10}{k-4.5}$	A1		Correct answer (terms collected) for second variable
	49			
	Substituting $2x - \frac{48}{2k-9} + 4 = 8$			
	$r = \frac{4k+6}{4k+6}$ or $\frac{2k+3}{4k+6}$			
	$x = \frac{1}{2k-9}$ or $\frac{1}{k-4.5}$			
	24 12			
	or $2 + \frac{24}{2k-9}$ or $2 + \frac{12}{k-4.5}$	A1	5	Correct answer (terms collected) for

(a)	Alternative			
	$\mathbf{M}^{-1} = \frac{1}{2k^2 - 3k - 27} \begin{pmatrix} k^2 + k - 6 & -3k - 9 & 3 + k \\ 1 - 3k & 2k + 6 & -5 \\ 18 - 4k & 0 & 2k - 9 \end{pmatrix}$	(M1)		One row correct with attempt at $\frac{1}{\det}$
	$\mathbf{M}^{-1} \begin{pmatrix} 8 \\ -6 \\ -4k+4 \end{pmatrix}$			
	$=\frac{1}{2k^2-3k-27} \begin{pmatrix} 8k^2+8k-48+18k+54-4k^2-8k+12\\ 8-24k-12k-36+20k-20\\ 144-32k-8k^2+44k-36 \end{pmatrix}$	(dM1)		Two rows correct (unsimplified) with attempt at $\frac{1}{det}$
	$=\frac{1}{2k^2-3k-27}\begin{pmatrix}4k^2+18k+18\\-16k-48\\-8k^2+12k+108\end{pmatrix}$	(A1) (A1) (A1)	(5)	A1 for each correct row including correct $\frac{1}{det}$
	$\left\{ = \frac{1}{(2k-9)(k+3)} \begin{pmatrix} 2(2k+3)(k+3) \\ -16(k+3) \\ -4(2k-9)(k+3) \end{pmatrix} \right\}$			

(b)	Sets their determinant = 0	M1		MUST be three term quadratic
	$(0 = 2k^2 - 3k - 27)$ k = -3 or $k = 4.5$	A1,A1	3	A1 for each correct value
	Alternative Considers when denominators in expressions above are zero. k = -3 or $k = 4.5$	(M1) (A1,A1)	(3)	

(c)	When $k = 4.5$, matrix becomes			
				2x + 3y - z = 8
	0 0 2.5 -18 OE			$3x + \frac{9}{2}y + z = -6$
	0 0 7.5 -30			$4x + 6y + \frac{11}{2}z = -14$
	(Inconsistent,) therefore no solutions.	M1		k must be correct, with correct working.
	Three planes form a (triangular) prism.	A1		If "Three planes form a (triangular) prism." With no working M0A0
	When $k = -3$, matrix becomes 2x + 3y - z = 8 3x - 3y + z = -6 OE 4x + 6y - 2z = 16			
	(Consistent,) therefore infinite number of solutions.	B1		With correct working
	Two planes are identical and intersect the third plane (in a line). (Accept sheaf)	B 1	4	With correct working MUST say two planes are the same NOT simply "sheaf" or "line"
	Total		12	

Q6	Solution	Mark	Total	Comment
(a)	$\mathbf{a} \times \mathbf{c} \mathbf{d} =$			Correctly evaluates an appropriate triple scalar product
				(eg \overrightarrow{AB} , \overrightarrow{AC} & \overrightarrow{AD})
	6 4 -3			or uses correct vector product result in scalar product
	2(-9-16)-2(3-24)+(-4-18) or 2(-9-16)+(-6-4)+6(8-3) OE	M1		$ \begin{pmatrix} 1\\4\\-3 \end{pmatrix} \begin{pmatrix} -22\\4\\8 \end{pmatrix} \text{ or } \begin{pmatrix} 2\\-1\\6 \end{pmatrix} \begin{pmatrix} -25\\10\\5 \end{pmatrix} \text{ or } \begin{pmatrix} 2\\3\\4 \end{pmatrix} \begin{pmatrix} -21\\12\\9 \end{pmatrix} $
	=-30			
	Volume = 30 (cubic units)	A1	2	States correct positive volume. (Condone –30 = 30)
(b)(i)	v or $\mathbf{w} = \overline{CB} = \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}$ or $\overline{CD} = \begin{pmatrix} -1 \\ 1 \\ -7 \end{pmatrix} = \overline{BE}$ or $\overline{CE} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ or $\overline{DB} = \begin{pmatrix} 3 \\ -2 \\ 13 \end{pmatrix}$	B1 B1		Any correct direction vector Second correct direction vector
	$\mathbf{u} = \begin{pmatrix} 4\\2\\10 \end{pmatrix} \text{ or } \begin{pmatrix} 2\\3\\4 \end{pmatrix} \text{ or } \begin{pmatrix} 1\\4\\-3 \end{pmatrix} \text{ or } \begin{pmatrix} 3\\3\\3 \end{pmatrix}$			
	Hence $\mathbf{r} = \begin{pmatrix} 4 \\ 2 \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 1 \\ -7 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}$	B1	3	OE – Fully correct – there are many possible combinations

(b)(ii)	For plane <i>ABGD</i> , a perpendicular to			
	the plane is			
	$\overline{1}$ \overline	M1		Uses two correct vectors in a vector
	$\mathbf{n} = AB \times AD = \begin{vmatrix} 3 \\ 3 \end{vmatrix} \times \begin{vmatrix} 5 \\ 4 \end{vmatrix}$			product to find a normal to the plane
	(4) (-9)			$\left[\begin{array}{c} 3\\ 3\end{array}\right]$
				Also $DB = \begin{bmatrix} -2 \\ 12 \end{bmatrix}$
	(-47)			(13)
	= 14	4.1		\mathbf{n} correctly identified
	$\begin{pmatrix} 13 \end{pmatrix}$	AI		
				Other possible points
				$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$
	$k = \begin{bmatrix} -47 \\ 14 \\ 12 \\ 2 \\ -30 \end{bmatrix} = -30$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\begin{pmatrix} 6 \end{pmatrix} \begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$
	(-47)			
	Hence equation is $\mathbf{r} = -30$ OF			Uses scalar product to find the value
		A1	3	of <i>k</i> and expresses plane in required form
			•	
(b)(iii)	Direction vector of line is parallel to			
	(-3)			
	\overrightarrow{BD} , hence $\mathbf{q} = 2$			
	(-13)	B 1		Finds a direction vector
	\mathbf{p} = Position vector of a point on both			Other possibilities for point
	$\begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$			$\begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} 7 \\ -2 \end{pmatrix} \begin{pmatrix} 22/13 \\ -13 \end{pmatrix}$
	planes = $\begin{vmatrix} 2 \\ 0 \end{vmatrix}$ or $\begin{vmatrix} 4 \\ 1 \end{vmatrix}$ most likely			$\begin{vmatrix} 14/3 \\ 300 \end{vmatrix}, \begin{vmatrix} 0 \\ 46/13 \\ 00 \end{vmatrix}$
	(10) (-3)			$(-24_3)(23)(0)$
		R1		Clearly identifies a common point
		ы		
	$\begin{vmatrix} \mathbf{r} \\ \mathbf{r} \end{vmatrix} = \begin{pmatrix} 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 2 \\ 2 \\ - 0$			
	$\begin{vmatrix} 1 & - \\ 1 & 2 \\ 1 & 0 \end{vmatrix} $ $\begin{vmatrix} 2 \\ -13 \\ -13 \end{vmatrix} $ $- \mathbf{v}$	B 1		Fully correct form stated – including
			3	
	Total		11	

Q7	Solution	Mark	Total	Comment
(a)	Throughout this question: Condone missing brackets on factors, but penalise in final A1 CSO, even if			Correct use of column/row operations to obtain first linear factor
	recovered $\begin{vmatrix} x + y + z & y^2 & y + z \\ x + y + z & x^2 & x + z \\ x + y + z & 2y^2 & z \end{vmatrix}$	M1		$\begin{vmatrix} x - y & y^{2} - x^{2} & y - x \\ y & x^{2} & x + z \\ x + y & 2y^{2} & z \end{vmatrix}$
	$= (x + y + z) \begin{vmatrix} 1 & y^{2} & y + z \\ 1 & x^{2} & x + z \\ 1 & 2y^{2} & z \end{vmatrix}$	A1		$\begin{vmatrix} -1 & y+x & 1 \\ y & x^2 & x+z \\ x+y & 2y^2 & z \end{vmatrix}$ Correct extraction of $x+y+z$ or $y-x$
	$= \begin{pmatrix} (x+y+z) \begin{vmatrix} 1 & y^2 & y+z \\ 0 & x^2 - y^2 & x - y \\ 0 & y^2 & -y \end{vmatrix} \end{pmatrix}$			$\begin{pmatrix} 0 & y+x & 1 \\ (y-x) \begin{vmatrix} x+y+z & x^2 & x+z \\ x+y+z & 2y^2 & z \end{vmatrix} \end{pmatrix}$
	$\left \begin{pmatrix} (x+y+z)(x-y) \\ 0 \\ y^2 \\ y^2 \\ -y \end{pmatrix} \right ^{1} \begin{pmatrix} y^2 \\ y+z \\ 0 \\ y^2 \\ -y \\ y^2 \end{pmatrix}$			
	$ \begin{vmatrix} \text{or} \\ (x+y+z)y & \begin{vmatrix} 1 & y^2 & y+z \\ 0 & x^2-y^2 & x-y \\ 0 & y & -1 \end{vmatrix} $	A1		$\begin{pmatrix} (y-x)(x+y+z) & 0 & y+x & 1 \\ 0 & x^2 - 2y^2 & x \\ 1 & 2y^2 & z \\ \end{bmatrix}$ Correct extraction of second linear
	$= (x + y + z)(x - y)y\begin{vmatrix} 1 & y^{2} & y + z \\ 0 & x + y & 1 \\ 0 & y & -1 \end{vmatrix}$			factor $y, x+y+z$ or $y-x$
		A1		y, $x + y + z$ or $y - x$
		dM1		Correctly expands final determinant (unsimplified) – MUST have scored at least M1A1A1
	=-y(x+y+z)(x-y)(x+2y) OE	A1	6	Fully correct expansion (in linear form) – CSO

(b)	For a singular matrix det = 0	M1		Attempt to substitute in given values
	-3(2+3+z)(2-3)(2+6) = 0			for $x(=2)$ and $y(=3)$ and set their
	$PI by z \pm 5 = 0$			determinant equal to zero
	$110y \ z+3=0$			Be deperous
				De generous.
	Hence $z = -5$	Δ1		
			2	Correct value obtained – WUSI nave
			_	scored 6 marks in part (a) CSO
	Total		8	
(b)	Alternative			Independent of (a)
	$\begin{vmatrix} 2 & 9 & 3+z \end{vmatrix}$			
	$\begin{vmatrix} 3 & 4 & 2+z \end{vmatrix}$			
	5 18 7			
	$0 = 2(4\pi, 36, 18\pi) = 2(0\pi, 54, 18\pi)$			
	0 = 2(42 - 30 - 182) = 3(92 - 34 - 182)			
	+5(18+9z-12-4z)	(M1)		OF
		(\mathbf{MII})		OE
	Hence $z = -5$	(A1)	(-)	CSO – doesn't need 6 marks in (a)
			(2)	

Q8	Solution	Mark	Total	Comment
(a)	Value = 1	B1		CAO
(b)(i)	-2a + 3 = -5 -2b + c = 4 ac - 3b = 1	M1	1	Forms two correct equations
	a = 4 b = -3 c = -2	B1 A1 A1	4	Finds correct value of a Finds correct value of b Finds correct value of c
(b)(ii)	$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 4 & 3\\-3 & -2 \end{bmatrix} \begin{bmatrix} x\\mx+2 \end{bmatrix} = \begin{bmatrix} 4x+3mx+6\\-3x-2mx-4 \end{bmatrix}$			Obtains expressions for their x' and y' in x only
	x' = "4" x + 3mx + 6 y' = "-3" x + "-2" mx + "-4" Invariant implies y' = mx'+2	B1F		x' = 4x + 3mx + 3k y' = -3x - 2mx - 2k Invariant implies $y' = mx' + k$
	Therefore -3x-2y = m(4x+3y)+2 or -3x - 2mx - 4 = m(4x + 3mx + 6) + 2	M1		or -3x - 2mx - 2k = m(4x + 3mx + 3k) + k Applies invariant line condition $(k \neq 0)$
	$3(m+1)^{2} x+6(m+1)=0$ Therefore $m = -1$ so $y = -x + 2$ is the required line	A1	3	$3(m+1)^{2} x + 3k(m+1) = 0$ Obtains the correct equation for the invariant line through the point (0, 2)
	Total		8	

Q9	Solution	Mark	Total	Comment
(a) (b)(i)	$\begin{vmatrix} -p - \lambda & q - p \\ p + q & p - \lambda \end{vmatrix} = 0$ $(-p - \lambda)(p - \lambda) - (p + q)(q - p) = 0$ $-p^{2} + \lambda^{2} + p^{2} - q^{2} = 0$ $(\lambda - q)(\lambda + q) = 0$ $\lambda = \pm q$	M1 A1,A1	3	Forms characteristic equation by expanding determinant. PI = 0 A1 each eigenvalue
	$\begin{bmatrix} -p & q-p \\ p+q & p \end{bmatrix} \begin{bmatrix} q-p \\ p+q \end{bmatrix} = \begin{bmatrix} q^2 - pq \\ q^2 + pq \end{bmatrix} = q \begin{bmatrix} q-p \\ p+q \end{bmatrix}$	M1		Must have correct intermediate step from LHS to RHS
(ii)	$\lambda = q$	A1	2	
	$\begin{bmatrix} -p+q & q-p \\ p+q & p+q \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$			
	Top row gives $(-p + q)x + (q - p)y = 0$ or Bottom row gives $(p + q)x + (p + q)y = 0$	M1		Minimal acceptable: -px + qx + qy - py = 0 or px + qx + py + qy = 0
	Hence an eigenvector is $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ which contains no p or q terms	A1	2	Obtains correct eigenvector and comments on there being no p , q terms
	ALTERNATIVE for (b)(i)			
	$\begin{bmatrix} x - q \\ -p - q & q - p \\ p + q & p - q \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Using top row $(-p - q)x + (q - p)y = 0$ or using second row $(p + q)x + (p - q)y = 0$	(M1)		
	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} q - p \\ p + q \end{bmatrix}$	(A1)	(2)	Clear working to show/verify eigenvector. Must state $\lambda = q$ somewhere. AG – CSO – Fully explained

				1
(c)(i)	$\mathbf{D} = \begin{bmatrix} q & 0 \end{bmatrix}$	B1F		Their matrix D stated
	$\mathbf{U} = \begin{bmatrix} -p+q & 1\\ p+q & -1 \end{bmatrix} \text{ or } \begin{bmatrix} -p+q & -1\\ p+q & 1 \end{bmatrix}$	B1F	2	$\mathbf{D} = \begin{bmatrix} -q & 0 \\ 0 & q \end{bmatrix} \mathbf{\&} \mathbf{U} = \begin{bmatrix} 1 & -p+q \\ -1 & p+q \end{bmatrix}$ Their correct matrix U (if zero column B0) stated MUST match order in D
(ii)	$\mathbf{U}^{-1} = \frac{1}{-2q} \begin{bmatrix} -1 & -1 \\ -p-q & -p+q \end{bmatrix} \text{ or } \frac{1}{2q} \begin{bmatrix} 1 & 1 \\ -p-q & -p+q \end{bmatrix}$ or $\frac{1}{2q} \begin{bmatrix} 1 & 1 \\ p+q & p-q \end{bmatrix}$	B1		Finds U ⁻¹ correctly or $\frac{1}{2q}\begin{bmatrix} p+q & p-q\\ 1 & 1 \end{bmatrix}$ CAO
	$ \begin{pmatrix} \mathbf{M}^n = \mathbf{U}\mathbf{D}^n\mathbf{U}^{-1} \\ \frac{1}{2q} \begin{bmatrix} -p+q & 1\\ p+q & -1 \end{bmatrix} \begin{bmatrix} q^n & 0\\ 0 & (-q)^n \end{bmatrix} \begin{bmatrix} 1 & 1\\ p+q & p-q \end{bmatrix} $	M1		Multiplies their matrices in correct order with \mathbf{D}^n as shown (U MUST be non-singular) or $\frac{1}{2q} \begin{bmatrix} 1 & -p+q \\ -1 & p+q \end{bmatrix} \begin{bmatrix} (-q)^n & 0 \\ 0 & q^n \end{bmatrix} \begin{bmatrix} p+q & p-q \\ 1 & 1 \end{bmatrix}$
	If n is an odd number then $(-q)^n = -q^n$ $\begin{pmatrix} = \frac{1}{2q} \begin{bmatrix} -p+q & 1\\ p+q & -1 \end{bmatrix} \begin{bmatrix} q^n & 0\\ 0 & -q^n \end{bmatrix} \begin{bmatrix} 1 & 1\\ p+q & p-q \end{bmatrix}$	A1		Explains the significance of n being odd and uses result
	$\begin{bmatrix} 2q \begin{bmatrix} p+q & 1 \end{bmatrix} \begin{bmatrix} 0 & -q \end{bmatrix} \begin{bmatrix} p+q & p & q \end{bmatrix}$ $= \frac{q^n}{2q} \begin{bmatrix} -p+q & 1 \\ p+q & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ p+q & p-q \end{bmatrix}$			or = $\frac{q^{n-1}}{2} \begin{bmatrix} 1 & -p+q \\ -1 & p+q \end{bmatrix} \begin{bmatrix} -p-q & -p+q \\ 1 & 1 \end{bmatrix}$
	$= \frac{q^{n-1}}{2} \begin{bmatrix} -p+q & -1 \\ p+q & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ p+q & p-q \end{bmatrix}$ or			or = $\frac{q^{n-1}}{2} \begin{bmatrix} -1 & -p+q \\ 1 & p+q \end{bmatrix} \begin{bmatrix} p+q & p-q \\ 1 & 1 \end{bmatrix}$
	$=\frac{q^{n-1}}{2}\begin{bmatrix}-p+q&1\\p+q&-1\end{bmatrix}\begin{bmatrix}1&1\\-p-q&-p+q\end{bmatrix}$	dM1		Correctly multiplies a pair of matrices together
	$=\frac{q^{n-1}}{2} \begin{bmatrix} -2p & -2p+2q\\ 2p+2q & 2p \end{bmatrix}$	A1		All matrices originally correct & multiplied together correctly to form one matrix.
	$=q^{n-1}\begin{bmatrix} -p & -p+q\\ p+q & p \end{bmatrix}$			
	$=q^{n-1}\mathbf{M}$	A1	6	AG

ALTERNATIVE for (c)(ii)			
$\mathbf{M}^n = \mathbf{U}\mathbf{D}^n\mathbf{U}^{-1}$	(M1)		Seen and correctly used
If n is an odd number then $(-q)^n = -q^n$	(A1)		Explains the significance of <i>n</i> being odd
$\mathbf{D}^{n} = \begin{pmatrix} q^{n} & 0 \\ 0 & (-q)^{n} \end{pmatrix} = \begin{pmatrix} q^{n} & 0 \\ 0 & -q^{n} \end{pmatrix}$	(A1)		Uses the above result in \mathbf{D}^n
$=q^{n-1}\begin{pmatrix} q & 0\\ 0 & -q \end{pmatrix} = q^{n-1}\mathbf{D}$	(A1)		Expresses \mathbf{D}^n in terms of \mathbf{D}
$\therefore \mathbf{M}^{n} = \mathbf{U}(q^{n-1}\mathbf{D})\mathbf{U}^{-1}$ $= q^{n-1}\mathbf{U}\mathbf{D}\mathbf{U}^{-1}$	(dM1)		Substitutes q^{n-1} D for D ^{<i>n</i>}
$=q^{n-1}\mathbf{M}$	(A1)	(6)	Completes proof to show result AG
 Total		15	